(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaB13
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaB13 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();

while (x > z || y > z) {
if (x > z) {
x--;
} else if (y > z) {
y--;
} else {
continue;
}
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
PastaB13.main([Ljava/lang/String;)V: Graph of 246 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 30 rules for P and 2 rules for R.


Combined rules. Obtained 5 rules for P and 0 rules for R.


Filtered ground terms:


1497_0_main_LE(x1, x2, x3, x4, x5, x6) → 1497_0_main_LE(x2, x3, x4, x5, x6)
Cond_1482_0_main_Load1(x1, x2, x3, x4, x5, x6) → Cond_1482_0_main_Load1(x1, x3, x4, x5, x6)
1482_0_main_Load(x1, x2, x3, x4, x5) → 1482_0_main_Load(x2, x3, x4, x5)
Cond_1497_0_main_LE2(x1, x2, x3, x4, x5, x6, x7) → Cond_1497_0_main_LE2(x1, x3, x4, x5, x6, x7)
Cond_1497_0_main_LE1(x1, x2, x3, x4, x5, x6, x7) → Cond_1497_0_main_LE1(x1, x3, x4, x5, x6, x7)
Cond_1497_0_main_LE(x1, x2, x3, x4, x5, x6, x7) → Cond_1497_0_main_LE(x1, x3, x4, x5, x6, x7)
Cond_1482_0_main_Load(x1, x2, x3, x4, x5, x6) → Cond_1482_0_main_Load(x1, x3, x4, x5, x6)

Filtered duplicate args:


1497_0_main_LE(x1, x2, x3, x4, x5) → 1497_0_main_LE(x2, x4, x5)
Cond_1482_0_main_Load1(x1, x2, x3, x4, x5) → Cond_1482_0_main_Load1(x1, x3, x4, x5)
1482_0_main_Load(x1, x2, x3, x4) → 1482_0_main_Load(x2, x3, x4)
Cond_1497_0_main_LE2(x1, x2, x3, x4, x5, x6) → Cond_1497_0_main_LE2(x1, x3, x5, x6)
Cond_1497_0_main_LE1(x1, x2, x3, x4, x5, x6) → Cond_1497_0_main_LE1(x1, x3, x5, x6)
Cond_1497_0_main_LE(x1, x2, x3, x4, x5, x6) → Cond_1497_0_main_LE(x1, x3, x5, x6)
Cond_1482_0_main_Load(x1, x2, x3, x4, x5) → Cond_1482_0_main_Load(x1, x3, x4, x5)

Combined rules. Obtained 5 rules for P and 0 rules for R.


Finished conversion. Obtained 5 rules for P and 0 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(x2[0] < x0[0], x1[0], x2[0], x0[0])
(1): COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1])
(2): 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(x2[2] >= x1[2] && x2[2] >= x0[2], x1[2], x0[2], x2[2])
(3): COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
(4): 1497_0_MAIN_LE(x1[4], x0[4], x2[4]) → COND_1497_0_MAIN_LE1(x2[4] >= x0[4] && x2[4] < x1[4], x1[4], x0[4], x2[4])
(5): COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5]) → 1482_0_MAIN_LOAD(x1[5] + -1, x2[5], x0[5])
(6): 1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(x2[6] < x0[6], x1[6], x0[6], x2[6])
(7): COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], x0[7] + -1)
(8): 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(x2[8] >= x0[8] && x2[8] < x1[8], x1[8], x2[8], x0[8])

(0) -> (1), if ((x2[0] < x0[0]* TRUE)∧(x1[0]* x1[1])∧(x2[0]* x2[1])∧(x0[0]* x0[1]))


(1) -> (2), if ((x1[1]* x1[2])∧(x0[1]* x0[2])∧(x2[1]* x2[2]))


(1) -> (4), if ((x1[1]* x1[4])∧(x0[1]* x0[4])∧(x2[1]* x2[4]))


(1) -> (6), if ((x1[1]* x1[6])∧(x0[1]* x0[6])∧(x2[1]* x2[6]))


(2) -> (3), if ((x2[2] >= x1[2] && x2[2] >= x0[2]* TRUE)∧(x1[2]* x1[3])∧(x0[2]* x0[3])∧(x2[2]* x2[3]))


(3) -> (0), if ((x1[3]* x1[0])∧(x2[3]* x2[0])∧(x0[3]* x0[0]))


(3) -> (8), if ((x1[3]* x1[8])∧(x2[3]* x2[8])∧(x0[3]* x0[8]))


(4) -> (5), if ((x2[4] >= x0[4] && x2[4] < x1[4]* TRUE)∧(x1[4]* x1[5])∧(x0[4]* x0[5])∧(x2[4]* x2[5]))


(5) -> (0), if ((x1[5] + -1* x1[0])∧(x2[5]* x2[0])∧(x0[5]* x0[0]))


(5) -> (8), if ((x1[5] + -1* x1[8])∧(x2[5]* x2[8])∧(x0[5]* x0[8]))


(6) -> (7), if ((x2[6] < x0[6]* TRUE)∧(x1[6]* x1[7])∧(x0[6]* x0[7])∧(x2[6]* x2[7]))


(7) -> (0), if ((x1[7]* x1[0])∧(x2[7]* x2[0])∧(x0[7] + -1* x0[0]))


(7) -> (8), if ((x1[7]* x1[8])∧(x2[7]* x2[8])∧(x0[7] + -1* x0[8]))


(8) -> (1), if ((x2[8] >= x0[8] && x2[8] < x1[8]* TRUE)∧(x1[8]* x1[1])∧(x2[8]* x2[1])∧(x0[8]* x0[1]))



The set Q is empty.

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1482_0_MAIN_LOAD(x1, x2, x0) → COND_1482_0_MAIN_LOAD(<(x2, x0), x1, x2, x0) the following chains were created:
  • We consider the chain 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0]), COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]) which results in the following constraint:

    (1)    (<(x2[0], x0[0])=TRUEx1[0]=x1[1]x2[0]=x2[1]x0[0]=x0[1]1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (<(x2[0], x0[0])=TRUE1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[0] + [bni_34]x1[0] ≥ 0∧[(-1)bso_35] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[0] + [bni_34]x1[0] ≥ 0∧[(-1)bso_35] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[0] + [bni_34]x1[0] ≥ 0∧[(-1)bso_35] ≥ 0)



    We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (6)    (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)



    We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (8)    (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]x2[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)


    (9)    (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)







For Pair COND_1482_0_MAIN_LOAD(TRUE, x1, x2, x0) → 1497_0_MAIN_LE(x1, x0, x2) the following chains were created:
  • We consider the chain COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]), 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2]) which results in the following constraint:

    (10)    (x1[1]=x1[2]x0[1]=x0[2]x2[1]=x2[2]COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))



    We simplified constraint (10) using rule (IV) which results in the following new constraint:

    (11)    (COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))



    We simplified constraint (11) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (12)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)



    We simplified constraint (12) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (13)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)



    We simplified constraint (13) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (14)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)



    We simplified constraint (14) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (15)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_37] ≥ 0)



  • We consider the chain COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]), 1497_0_MAIN_LE(x1[4], x0[4], x2[4]) → COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4]) which results in the following constraint:

    (16)    (x1[1]=x1[4]x0[1]=x0[4]x2[1]=x2[4]COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))



    We simplified constraint (16) using rule (IV) which results in the following new constraint:

    (17)    (COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))



    We simplified constraint (17) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (18)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)



    We simplified constraint (18) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (19)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)



    We simplified constraint (19) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (20)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)



    We simplified constraint (20) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (21)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_37] ≥ 0)



  • We consider the chain COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]), 1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6]) which results in the following constraint:

    (22)    (x1[1]=x1[6]x0[1]=x0[6]x2[1]=x2[6]COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))



    We simplified constraint (22) using rule (IV) which results in the following new constraint:

    (23)    (COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))



    We simplified constraint (23) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (24)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)



    We simplified constraint (24) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (25)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)



    We simplified constraint (25) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (26)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)



    We simplified constraint (26) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (27)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_37] ≥ 0)







For Pair 1497_0_MAIN_LE(x1, x0, x2) → COND_1497_0_MAIN_LE(&&(>=(x2, x1), >=(x2, x0)), x1, x0, x2) the following chains were created:
  • We consider the chain 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2]), COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]) which results in the following constraint:

    (28)    (&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUEx1[2]=x1[3]x0[2]=x0[3]x2[2]=x2[3]1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥NonInfC∧1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))



    We simplified constraint (28) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (29)    (>=(x2[2], x1[2])=TRUE>=(x2[2], x0[2])=TRUE1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥NonInfC∧1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))



    We simplified constraint (29) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (30)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] + [bni_38]x1[2] ≥ 0∧[(-1)bso_39] ≥ 0)



    We simplified constraint (30) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (31)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] + [bni_38]x1[2] ≥ 0∧[(-1)bso_39] ≥ 0)



    We simplified constraint (31) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (32)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] + [bni_38]x1[2] ≥ 0∧[(-1)bso_39] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (33)    (x2[2] ≥ 0∧x1[2] + x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] ≥ 0∧[(-1)bso_39] ≥ 0)



    We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (34)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] ≥ 0∧[(-1)bso_39] ≥ 0)



    We simplified constraint (34) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (35)    (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] ≥ 0∧[(-1)bso_39] ≥ 0)


    (36)    (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] ≥ 0∧[(-1)bso_39] ≥ 0)







For Pair COND_1497_0_MAIN_LE(TRUE, x1, x0, x2) → 1482_0_MAIN_LOAD(x1, x2, x0) the following chains were created:
  • We consider the chain COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]), 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0]) which results in the following constraint:

    (37)    (x1[3]=x1[0]x2[3]=x2[0]x0[3]=x0[0]COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))



    We simplified constraint (37) using rule (IV) which results in the following new constraint:

    (38)    (COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))



    We simplified constraint (38) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (39)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_41] ≥ 0)



    We simplified constraint (39) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (40)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_41] ≥ 0)



    We simplified constraint (40) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (41)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_41] ≥ 0)



    We simplified constraint (41) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (42)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_41] ≥ 0)



  • We consider the chain COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]), 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8]) which results in the following constraint:

    (43)    (x1[3]=x1[8]x2[3]=x2[8]x0[3]=x0[8]COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))



    We simplified constraint (43) using rule (IV) which results in the following new constraint:

    (44)    (COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))



    We simplified constraint (44) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (45)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_41] ≥ 0)



    We simplified constraint (45) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (46)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_41] ≥ 0)



    We simplified constraint (46) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (47)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_41] ≥ 0)



    We simplified constraint (47) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (48)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_41] ≥ 0)







For Pair 1497_0_MAIN_LE(x1, x0, x2) → COND_1497_0_MAIN_LE1(&&(>=(x2, x0), <(x2, x1)), x1, x0, x2) the following chains were created:
  • We consider the chain 1497_0_MAIN_LE(x1[4], x0[4], x2[4]) → COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4]), COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5]) → 1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5]) which results in the following constraint:

    (49)    (&&(>=(x2[4], x0[4]), <(x2[4], x1[4]))=TRUEx1[4]=x1[5]x0[4]=x0[5]x2[4]=x2[5]1497_0_MAIN_LE(x1[4], x0[4], x2[4])≥NonInfC∧1497_0_MAIN_LE(x1[4], x0[4], x2[4])≥COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])∧(UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥))



    We simplified constraint (49) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (50)    (>=(x2[4], x0[4])=TRUE<(x2[4], x1[4])=TRUE1497_0_MAIN_LE(x1[4], x0[4], x2[4])≥NonInfC∧1497_0_MAIN_LE(x1[4], x0[4], x2[4])≥COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])∧(UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥))



    We simplified constraint (50) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (51)    (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]x2[4] + [bni_42]x1[4] ≥ 0∧[(-1)bso_43] ≥ 0)



    We simplified constraint (51) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (52)    (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]x2[4] + [bni_42]x1[4] ≥ 0∧[(-1)bso_43] ≥ 0)



    We simplified constraint (52) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (53)    (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]x2[4] + [bni_42]x1[4] ≥ 0∧[(-1)bso_43] ≥ 0)



    We simplified constraint (53) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (54)    (x2[4] ≥ 0∧x1[4] + [-1] + [-1]x0[4] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]x0[4] + [(-1)bni_42]x2[4] + [bni_42]x1[4] ≥ 0∧[(-1)bso_43] ≥ 0)



    We simplified constraint (54) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (55)    (x2[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)Bound*bni_42] + [bni_42]x0[4] ≥ 0∧[(-1)bso_43] ≥ 0)



    We simplified constraint (55) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (56)    (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)Bound*bni_42] + [bni_42]x0[4] ≥ 0∧[(-1)bso_43] ≥ 0)


    (57)    (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)Bound*bni_42] + [bni_42]x0[4] ≥ 0∧[(-1)bso_43] ≥ 0)







For Pair COND_1497_0_MAIN_LE1(TRUE, x1, x0, x2) → 1482_0_MAIN_LOAD(+(x1, -1), x2, x0) the following chains were created:
  • We consider the chain 1497_0_MAIN_LE(x1[4], x0[4], x2[4]) → COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4]), COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5]) → 1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5]), 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0]) which results in the following constraint:

    (58)    (&&(>=(x2[4], x0[4]), <(x2[4], x1[4]))=TRUEx1[4]=x1[5]x0[4]=x0[5]x2[4]=x2[5]+(x1[5], -1)=x1[0]x2[5]=x2[0]x0[5]=x0[0]COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5])≥NonInfC∧COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5])≥1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])∧(UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥))



    We simplified constraint (58) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (59)    (>=(x2[4], x0[4])=TRUE<(x2[4], x1[4])=TRUECOND_1497_0_MAIN_LE1(TRUE, x1[4], x0[4], x2[4])≥NonInfC∧COND_1497_0_MAIN_LE1(TRUE, x1[4], x0[4], x2[4])≥1482_0_MAIN_LOAD(+(x1[4], -1), x2[4], x0[4])∧(UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥))



    We simplified constraint (59) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (60)    (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (60) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (61)    (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (61) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (62)    (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (62) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (63)    (x2[4] ≥ 0∧x1[4] + [-1] + [-1]x0[4] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x0[4] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (63) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (64)    (x2[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (64) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (65)    (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)


    (66)    (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



  • We consider the chain 1497_0_MAIN_LE(x1[4], x0[4], x2[4]) → COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4]), COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5]) → 1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5]), 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8]) which results in the following constraint:

    (67)    (&&(>=(x2[4], x0[4]), <(x2[4], x1[4]))=TRUEx1[4]=x1[5]x0[4]=x0[5]x2[4]=x2[5]+(x1[5], -1)=x1[8]x2[5]=x2[8]x0[5]=x0[8]COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5])≥NonInfC∧COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5])≥1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])∧(UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥))



    We simplified constraint (67) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (68)    (>=(x2[4], x0[4])=TRUE<(x2[4], x1[4])=TRUECOND_1497_0_MAIN_LE1(TRUE, x1[4], x0[4], x2[4])≥NonInfC∧COND_1497_0_MAIN_LE1(TRUE, x1[4], x0[4], x2[4])≥1482_0_MAIN_LOAD(+(x1[4], -1), x2[4], x0[4])∧(UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥))



    We simplified constraint (68) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (69)    (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (69) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (70)    (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (70) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (71)    (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (71) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (72)    (x2[4] ≥ 0∧x1[4] + [-1] + [-1]x0[4] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x0[4] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (72) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (73)    (x2[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (73) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (74)    (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)


    (75)    (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)







For Pair 1497_0_MAIN_LE(x1, x0, x2) → COND_1497_0_MAIN_LE2(<(x2, x0), x1, x0, x2) the following chains were created:
  • We consider the chain 1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6]), COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1)) which results in the following constraint:

    (76)    (<(x2[6], x0[6])=TRUEx1[6]=x1[7]x0[6]=x0[7]x2[6]=x2[7]1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥NonInfC∧1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])∧(UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥))



    We simplified constraint (76) using rule (IV) which results in the following new constraint:

    (77)    (<(x2[6], x0[6])=TRUE1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥NonInfC∧1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])∧(UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥))



    We simplified constraint (77) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (78)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]x2[6] + [bni_46]x1[6] ≥ 0∧[(-1)bso_47] ≥ 0)



    We simplified constraint (78) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (79)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]x2[6] + [bni_46]x1[6] ≥ 0∧[(-1)bso_47] ≥ 0)



    We simplified constraint (79) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (80)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]x2[6] + [bni_46]x1[6] ≥ 0∧[(-1)bso_47] ≥ 0)



    We simplified constraint (80) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (81)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[bni_46] = 0∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]x2[6] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)



    We simplified constraint (81) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (82)    (x0[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[bni_46] = 0∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]x2[6] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)



    We simplified constraint (82) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (83)    (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[bni_46] = 0∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]x2[6] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)


    (84)    (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[bni_46] = 0∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]x2[6] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)







For Pair COND_1497_0_MAIN_LE2(TRUE, x1, x0, x2) → 1482_0_MAIN_LOAD(x1, x2, +(x0, -1)) the following chains were created:
  • We consider the chain 1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6]), COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1)), 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0]) which results in the following constraint:

    (85)    (<(x2[6], x0[6])=TRUEx1[6]=x1[7]x0[6]=x0[7]x2[6]=x2[7]x1[7]=x1[0]x2[7]=x2[0]+(x0[7], -1)=x0[0]COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))



    We simplified constraint (85) using rules (III), (IV) which results in the following new constraint:

    (86)    (<(x2[6], x0[6])=TRUECOND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥1482_0_MAIN_LOAD(x1[6], x2[6], +(x0[6], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))



    We simplified constraint (86) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (87)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] + [bni_48]x1[6] ≥ 0∧[(-1)bso_49] ≥ 0)



    We simplified constraint (87) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (88)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] + [bni_48]x1[6] ≥ 0∧[(-1)bso_49] ≥ 0)



    We simplified constraint (88) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (89)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] + [bni_48]x1[6] ≥ 0∧[(-1)bso_49] ≥ 0)



    We simplified constraint (89) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (90)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)



    We simplified constraint (90) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (91)    (x0[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)



    We simplified constraint (91) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (92)    (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)


    (93)    (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)



  • We consider the chain 1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6]), COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1)), 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8]) which results in the following constraint:

    (94)    (<(x2[6], x0[6])=TRUEx1[6]=x1[7]x0[6]=x0[7]x2[6]=x2[7]x1[7]=x1[8]x2[7]=x2[8]+(x0[7], -1)=x0[8]COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))



    We simplified constraint (94) using rules (III), (IV) which results in the following new constraint:

    (95)    (<(x2[6], x0[6])=TRUECOND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥1482_0_MAIN_LOAD(x1[6], x2[6], +(x0[6], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))



    We simplified constraint (95) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (96)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] + [bni_48]x1[6] ≥ 0∧[(-1)bso_49] ≥ 0)



    We simplified constraint (96) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (97)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] + [bni_48]x1[6] ≥ 0∧[(-1)bso_49] ≥ 0)



    We simplified constraint (97) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (98)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] + [bni_48]x1[6] ≥ 0∧[(-1)bso_49] ≥ 0)



    We simplified constraint (98) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (99)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)



    We simplified constraint (99) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (100)    (x0[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)



    We simplified constraint (100) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (101)    (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)


    (102)    (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)







For Pair 1482_0_MAIN_LOAD(x1, x2, x0) → COND_1482_0_MAIN_LOAD(&&(>=(x2, x0), <(x2, x1)), x1, x2, x0) the following chains were created:
  • We consider the chain 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8]), COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]) which results in the following constraint:

    (103)    (&&(>=(x2[8], x0[8]), <(x2[8], x1[8]))=TRUEx1[8]=x1[1]x2[8]=x2[1]x0[8]=x0[1]1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥NonInfC∧1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])∧(UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥))



    We simplified constraint (103) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (104)    (>=(x2[8], x0[8])=TRUE<(x2[8], x1[8])=TRUE1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥NonInfC∧1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])∧(UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥))



    We simplified constraint (104) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (105)    (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_50 + (-1)Bound*bni_50] + [(-1)bni_50]x2[8] + [bni_50]x1[8] ≥ 0∧[(-1)bso_51] ≥ 0)



    We simplified constraint (105) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (106)    (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_50 + (-1)Bound*bni_50] + [(-1)bni_50]x2[8] + [bni_50]x1[8] ≥ 0∧[(-1)bso_51] ≥ 0)



    We simplified constraint (106) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (107)    (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_50 + (-1)Bound*bni_50] + [(-1)bni_50]x2[8] + [bni_50]x1[8] ≥ 0∧[(-1)bso_51] ≥ 0)



    We simplified constraint (107) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (108)    (x2[8] ≥ 0∧x1[8] + [-1] + [-1]x0[8] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_50 + (-1)Bound*bni_50] + [(-1)bni_50]x0[8] + [(-1)bni_50]x2[8] + [bni_50]x1[8] ≥ 0∧[(-1)bso_51] ≥ 0)



    We simplified constraint (108) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (109)    (x2[8] ≥ 0∧x0[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)Bound*bni_50] + [bni_50]x0[8] ≥ 0∧[(-1)bso_51] ≥ 0)



    We simplified constraint (109) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (110)    (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)Bound*bni_50] + [bni_50]x0[8] ≥ 0∧[(-1)bso_51] ≥ 0)


    (111)    (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)Bound*bni_50] + [bni_50]x0[8] ≥ 0∧[(-1)bso_51] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 1482_0_MAIN_LOAD(x1, x2, x0) → COND_1482_0_MAIN_LOAD(<(x2, x0), x1, x2, x0)
    • (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]x2[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)
    • (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)

  • COND_1482_0_MAIN_LOAD(TRUE, x1, x2, x0) → 1497_0_MAIN_LE(x1, x0, x2)
    • ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_37] ≥ 0)
    • ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_37] ≥ 0)
    • ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_37] ≥ 0)

  • 1497_0_MAIN_LE(x1, x0, x2) → COND_1497_0_MAIN_LE(&&(>=(x2, x1), >=(x2, x0)), x1, x0, x2)
    • (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] ≥ 0∧[(-1)bso_39] ≥ 0)
    • (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] ≥ 0∧[(-1)bso_39] ≥ 0)

  • COND_1497_0_MAIN_LE(TRUE, x1, x0, x2) → 1482_0_MAIN_LOAD(x1, x2, x0)
    • ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_41] ≥ 0)
    • ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_41] ≥ 0)

  • 1497_0_MAIN_LE(x1, x0, x2) → COND_1497_0_MAIN_LE1(&&(>=(x2, x0), <(x2, x1)), x1, x0, x2)
    • (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)Bound*bni_42] + [bni_42]x0[4] ≥ 0∧[(-1)bso_43] ≥ 0)
    • (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)Bound*bni_42] + [bni_42]x0[4] ≥ 0∧[(-1)bso_43] ≥ 0)

  • COND_1497_0_MAIN_LE1(TRUE, x1, x0, x2) → 1482_0_MAIN_LOAD(+(x1, -1), x2, x0)
    • (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
    • (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
    • (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
    • (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)

  • 1497_0_MAIN_LE(x1, x0, x2) → COND_1497_0_MAIN_LE2(<(x2, x0), x1, x0, x2)
    • (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[bni_46] = 0∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]x2[6] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
    • (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[bni_46] = 0∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]x2[6] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)

  • COND_1497_0_MAIN_LE2(TRUE, x1, x0, x2) → 1482_0_MAIN_LOAD(x1, x2, +(x0, -1))
    • (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)
    • (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)
    • (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)
    • (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)

  • 1482_0_MAIN_LOAD(x1, x2, x0) → COND_1482_0_MAIN_LOAD(&&(>=(x2, x0), <(x2, x1)), x1, x2, x0)
    • (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)Bound*bni_50] + [bni_50]x0[8] ≥ 0∧[(-1)bso_51] ≥ 0)
    • (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)Bound*bni_50] + [bni_50]x0[8] ≥ 0∧[(-1)bso_51] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = [3]   
POL(1482_0_MAIN_LOAD(x1, x2, x3)) = [-1] + [-1]x2 + x1   
POL(COND_1482_0_MAIN_LOAD(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2   
POL(<(x1, x2)) = [-1]   
POL(1497_0_MAIN_LE(x1, x2, x3)) = [-1] + [-1]x3 + x1   
POL(COND_1497_0_MAIN_LE(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2   
POL(&&(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(COND_1497_0_MAIN_LE1(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(COND_1497_0_MAIN_LE2(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2   

The following pairs are in P>:

COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5]) → 1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])

The following pairs are in Pbound:

1497_0_MAIN_LE(x1[4], x0[4], x2[4]) → COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])
COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5]) → 1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])
1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])

The following pairs are in P:

1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])
COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1])
1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])
COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
1497_0_MAIN_LE(x1[4], x0[4], x2[4]) → COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])
1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])
COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))
1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])

At least the following rules have been oriented under context sensitive arithmetic replacement:

FALSE1&&(FALSE, FALSE)1

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(x2[0] < x0[0], x1[0], x2[0], x0[0])
(1): COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1])
(2): 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(x2[2] >= x1[2] && x2[2] >= x0[2], x1[2], x0[2], x2[2])
(3): COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
(4): 1497_0_MAIN_LE(x1[4], x0[4], x2[4]) → COND_1497_0_MAIN_LE1(x2[4] >= x0[4] && x2[4] < x1[4], x1[4], x0[4], x2[4])
(6): 1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(x2[6] < x0[6], x1[6], x0[6], x2[6])
(7): COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], x0[7] + -1)
(8): 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(x2[8] >= x0[8] && x2[8] < x1[8], x1[8], x2[8], x0[8])

(3) -> (0), if ((x1[3]* x1[0])∧(x2[3]* x2[0])∧(x0[3]* x0[0]))


(7) -> (0), if ((x1[7]* x1[0])∧(x2[7]* x2[0])∧(x0[7] + -1* x0[0]))


(0) -> (1), if ((x2[0] < x0[0]* TRUE)∧(x1[0]* x1[1])∧(x2[0]* x2[1])∧(x0[0]* x0[1]))


(8) -> (1), if ((x2[8] >= x0[8] && x2[8] < x1[8]* TRUE)∧(x1[8]* x1[1])∧(x2[8]* x2[1])∧(x0[8]* x0[1]))


(1) -> (2), if ((x1[1]* x1[2])∧(x0[1]* x0[2])∧(x2[1]* x2[2]))


(2) -> (3), if ((x2[2] >= x1[2] && x2[2] >= x0[2]* TRUE)∧(x1[2]* x1[3])∧(x0[2]* x0[3])∧(x2[2]* x2[3]))


(1) -> (4), if ((x1[1]* x1[4])∧(x0[1]* x0[4])∧(x2[1]* x2[4]))


(1) -> (6), if ((x1[1]* x1[6])∧(x0[1]* x0[6])∧(x2[1]* x2[6]))


(6) -> (7), if ((x2[6] < x0[6]* TRUE)∧(x1[6]* x1[7])∧(x0[6]* x0[7])∧(x2[6]* x2[7]))


(3) -> (8), if ((x1[3]* x1[8])∧(x2[3]* x2[8])∧(x0[3]* x0[8]))


(7) -> (8), if ((x1[7]* x1[8])∧(x2[7]* x2[8])∧(x0[7] + -1* x0[8]))



The set Q is empty.

(7) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(7): COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], x0[7] + -1)
(6): 1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(x2[6] < x0[6], x1[6], x0[6], x2[6])
(8): 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(x2[8] >= x0[8] && x2[8] < x1[8], x1[8], x2[8], x0[8])
(3): COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
(2): 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(x2[2] >= x1[2] && x2[2] >= x0[2], x1[2], x0[2], x2[2])
(1): COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1])
(0): 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(x2[0] < x0[0], x1[0], x2[0], x0[0])

(3) -> (0), if ((x1[3]* x1[0])∧(x2[3]* x2[0])∧(x0[3]* x0[0]))


(7) -> (0), if ((x1[7]* x1[0])∧(x2[7]* x2[0])∧(x0[7] + -1* x0[0]))


(0) -> (1), if ((x2[0] < x0[0]* TRUE)∧(x1[0]* x1[1])∧(x2[0]* x2[1])∧(x0[0]* x0[1]))


(8) -> (1), if ((x2[8] >= x0[8] && x2[8] < x1[8]* TRUE)∧(x1[8]* x1[1])∧(x2[8]* x2[1])∧(x0[8]* x0[1]))


(1) -> (2), if ((x1[1]* x1[2])∧(x0[1]* x0[2])∧(x2[1]* x2[2]))


(2) -> (3), if ((x2[2] >= x1[2] && x2[2] >= x0[2]* TRUE)∧(x1[2]* x1[3])∧(x0[2]* x0[3])∧(x2[2]* x2[3]))


(1) -> (6), if ((x1[1]* x1[6])∧(x0[1]* x0[6])∧(x2[1]* x2[6]))


(6) -> (7), if ((x2[6] < x0[6]* TRUE)∧(x1[6]* x1[7])∧(x0[6]* x0[7])∧(x2[6]* x2[7]))


(3) -> (8), if ((x1[3]* x1[8])∧(x2[3]* x2[8])∧(x0[3]* x0[8]))


(7) -> (8), if ((x1[7]* x1[8])∧(x2[7]* x2[8])∧(x0[7] + -1* x0[8]))



The set Q is empty.

(9) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1)) the following chains were created:
  • We consider the chain 1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6]), COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1)), 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0]) which results in the following constraint:

    (1)    (<(x2[6], x0[6])=TRUEx1[6]=x1[7]x0[6]=x0[7]x2[6]=x2[7]x1[7]=x1[0]x2[7]=x2[0]+(x0[7], -1)=x0[0]COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))



    We simplified constraint (1) using rules (III), (IV) which results in the following new constraint:

    (2)    (<(x2[6], x0[6])=TRUECOND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥1482_0_MAIN_LOAD(x1[6], x2[6], +(x0[6], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧[1 + (-1)bso_30] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧[1 + (-1)bso_30] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧[1 + (-1)bso_30] ≥ 0)



    We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (6)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x0[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)



    We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (8)    (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)


    (9)    (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)



  • We consider the chain 1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6]), COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1)), 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8]) which results in the following constraint:

    (10)    (<(x2[6], x0[6])=TRUEx1[6]=x1[7]x0[6]=x0[7]x2[6]=x2[7]x1[7]=x1[8]x2[7]=x2[8]+(x0[7], -1)=x0[8]COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))



    We simplified constraint (10) using rules (III), (IV) which results in the following new constraint:

    (11)    (<(x2[6], x0[6])=TRUECOND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥1482_0_MAIN_LOAD(x1[6], x2[6], +(x0[6], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))



    We simplified constraint (11) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (12)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧[1 + (-1)bso_30] ≥ 0)



    We simplified constraint (12) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (13)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧[1 + (-1)bso_30] ≥ 0)



    We simplified constraint (13) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (14)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧[1 + (-1)bso_30] ≥ 0)



    We simplified constraint (14) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (15)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)



    We simplified constraint (15) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (16)    (x0[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)



    We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (17)    (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)


    (18)    (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)







For Pair 1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6]) the following chains were created:
  • We consider the chain 1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6]), COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1)) which results in the following constraint:

    (19)    (<(x2[6], x0[6])=TRUEx1[6]=x1[7]x0[6]=x0[7]x2[6]=x2[7]1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥NonInfC∧1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])∧(UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥))



    We simplified constraint (19) using rule (IV) which results in the following new constraint:

    (20)    (<(x2[6], x0[6])=TRUE1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥NonInfC∧1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])∧(UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥))



    We simplified constraint (20) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (21)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-1)bni_31]x2[6] + [bni_31]x0[6] ≥ 0∧[(-1)bso_32] ≥ 0)



    We simplified constraint (21) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (22)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-1)bni_31]x2[6] + [bni_31]x0[6] ≥ 0∧[(-1)bso_32] ≥ 0)



    We simplified constraint (22) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (23)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-1)bni_31]x2[6] + [bni_31]x0[6] ≥ 0∧[(-1)bso_32] ≥ 0)



    We simplified constraint (23) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (24)    (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧0 = 0∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-1)bni_31]x2[6] + [bni_31]x0[6] ≥ 0∧0 = 0∧[(-1)bso_32] ≥ 0)



    We simplified constraint (24) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (25)    (x0[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧0 = 0∧[(-1)Bound*bni_31] + [bni_31]x0[6] ≥ 0∧0 = 0∧[(-1)bso_32] ≥ 0)



    We simplified constraint (25) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (26)    (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧0 = 0∧[(-1)Bound*bni_31] + [bni_31]x0[6] ≥ 0∧0 = 0∧[(-1)bso_32] ≥ 0)


    (27)    (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧0 = 0∧[(-1)Bound*bni_31] + [bni_31]x0[6] ≥ 0∧0 = 0∧[(-1)bso_32] ≥ 0)







For Pair 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8]) the following chains were created:
  • We consider the chain 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8]), COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]) which results in the following constraint:

    (28)    (&&(>=(x2[8], x0[8]), <(x2[8], x1[8]))=TRUEx1[8]=x1[1]x2[8]=x2[1]x0[8]=x0[1]1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥NonInfC∧1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])∧(UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥))



    We simplified constraint (28) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (29)    (>=(x2[8], x0[8])=TRUE<(x2[8], x1[8])=TRUE1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥NonInfC∧1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])∧(UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥))



    We simplified constraint (29) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (30)    (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[8] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)



    We simplified constraint (30) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (31)    (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[8] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)



    We simplified constraint (31) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (32)    (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[8] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (33)    (x2[8] ≥ 0∧x1[8] + [-1] + [-1]x0[8] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)



    We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (34)    (x2[8] ≥ 0∧x0[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)



    We simplified constraint (34) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (35)    (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)


    (36)    (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)







For Pair COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]) the following chains were created:
  • We consider the chain COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]), 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0]) which results in the following constraint:

    (37)    (x1[3]=x1[0]x2[3]=x2[0]x0[3]=x0[0]COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))



    We simplified constraint (37) using rule (IV) which results in the following new constraint:

    (38)    (COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))



    We simplified constraint (38) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (39)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_36] ≥ 0)



    We simplified constraint (39) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (40)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_36] ≥ 0)



    We simplified constraint (40) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (41)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_36] ≥ 0)



    We simplified constraint (41) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (42)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_36] ≥ 0)



  • We consider the chain COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]), 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8]) which results in the following constraint:

    (43)    (x1[3]=x1[8]x2[3]=x2[8]x0[3]=x0[8]COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))



    We simplified constraint (43) using rule (IV) which results in the following new constraint:

    (44)    (COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))



    We simplified constraint (44) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (45)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_36] ≥ 0)



    We simplified constraint (45) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (46)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_36] ≥ 0)



    We simplified constraint (46) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (47)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_36] ≥ 0)



    We simplified constraint (47) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (48)    ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_36] ≥ 0)







For Pair 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2]) the following chains were created:
  • We consider the chain 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2]), COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]) which results in the following constraint:

    (49)    (&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUEx1[2]=x1[3]x0[2]=x0[3]x2[2]=x2[3]1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥NonInfC∧1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))



    We simplified constraint (49) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (50)    (>=(x2[2], x1[2])=TRUE>=(x2[2], x0[2])=TRUE1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥NonInfC∧1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))



    We simplified constraint (50) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (51)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x2[2] + [bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (51) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (52)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x2[2] + [bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (52) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (53)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x2[2] + [bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (53) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (54)    (x2[2] ≥ 0∧x1[2] + x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x1[2] + [(-1)bni_37]x2[2] + [bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (54) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (55)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (55) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (56)    (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)


    (57)    (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)







For Pair COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]) the following chains were created:
  • We consider the chain COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]), 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2]) which results in the following constraint:

    (58)    (x1[1]=x1[2]x0[1]=x0[2]x2[1]=x2[2]COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))



    We simplified constraint (58) using rule (IV) which results in the following new constraint:

    (59)    (COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))



    We simplified constraint (59) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (60)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)



    We simplified constraint (60) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (61)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)



    We simplified constraint (61) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (62)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)



    We simplified constraint (62) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (63)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_40] ≥ 0)



  • We consider the chain COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]), 1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6]) which results in the following constraint:

    (64)    (x1[1]=x1[6]x0[1]=x0[6]x2[1]=x2[6]COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))



    We simplified constraint (64) using rule (IV) which results in the following new constraint:

    (65)    (COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))



    We simplified constraint (65) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (66)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)



    We simplified constraint (66) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (67)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)



    We simplified constraint (67) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (68)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)



    We simplified constraint (68) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (69)    ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_40] ≥ 0)







For Pair 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0]) the following chains were created:
  • We consider the chain 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0]), COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]) which results in the following constraint:

    (70)    (<(x2[0], x0[0])=TRUEx1[0]=x1[1]x2[0]=x2[1]x0[0]=x0[1]1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (70) using rule (IV) which results in the following new constraint:

    (71)    (<(x2[0], x0[0])=TRUE1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (71) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (72)    (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]x0[0] + [(-1)bni_41]x2[0] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (72) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (73)    (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]x0[0] + [(-1)bni_41]x2[0] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (73) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (74)    (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]x0[0] + [(-1)bni_41]x2[0] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (74) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (75)    (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧0 = 0∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]x0[0] + [(-1)bni_41]x2[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (75) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (76)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]x0[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (76) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (77)    (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]x0[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)


    (78)    (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]x0[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))
    • (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)
    • (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)
    • (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)
    • (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)

  • 1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])
    • (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧0 = 0∧[(-1)Bound*bni_31] + [bni_31]x0[6] ≥ 0∧0 = 0∧[(-1)bso_32] ≥ 0)
    • (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧0 = 0∧[(-1)Bound*bni_31] + [bni_31]x0[6] ≥ 0∧0 = 0∧[(-1)bso_32] ≥ 0)

  • 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])
    • (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)
    • (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)

  • COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
    • ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_36] ≥ 0)
    • ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_36] ≥ 0)

  • 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])
    • (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)
    • (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)

  • COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1])
    • ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_40] ≥ 0)
    • ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_40] ≥ 0)

  • 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])
    • (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]x0[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
    • (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]x0[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_1497_0_MAIN_LE2(x1, x2, x3, x4)) = [-1] + [-1]x4 + x3   
POL(1482_0_MAIN_LOAD(x1, x2, x3)) = [-1] + x3 + [-1]x2   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(1497_0_MAIN_LE(x1, x2, x3)) = [-1] + [-1]x3 + x2   
POL(<(x1, x2)) = [-1]   
POL(COND_1482_0_MAIN_LOAD(x1, x2, x3, x4)) = [-1] + x4 + [-1]x3   
POL(&&(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(COND_1497_0_MAIN_LE(x1, x2, x3, x4)) = [-1] + [-1]x4 + x3   

The following pairs are in P>:

COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))

The following pairs are in Pbound:

COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))
1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])
1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])

The following pairs are in P:

1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])
1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])
COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])
COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1])
1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(6): 1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(x2[6] < x0[6], x1[6], x0[6], x2[6])
(8): 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(x2[8] >= x0[8] && x2[8] < x1[8], x1[8], x2[8], x0[8])
(3): COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
(2): 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(x2[2] >= x1[2] && x2[2] >= x0[2], x1[2], x0[2], x2[2])
(1): COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1])
(0): 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(x2[0] < x0[0], x1[0], x2[0], x0[0])

(3) -> (0), if ((x1[3]* x1[0])∧(x2[3]* x2[0])∧(x0[3]* x0[0]))


(0) -> (1), if ((x2[0] < x0[0]* TRUE)∧(x1[0]* x1[1])∧(x2[0]* x2[1])∧(x0[0]* x0[1]))


(8) -> (1), if ((x2[8] >= x0[8] && x2[8] < x1[8]* TRUE)∧(x1[8]* x1[1])∧(x2[8]* x2[1])∧(x0[8]* x0[1]))


(1) -> (2), if ((x1[1]* x1[2])∧(x0[1]* x0[2])∧(x2[1]* x2[2]))


(2) -> (3), if ((x2[2] >= x1[2] && x2[2] >= x0[2]* TRUE)∧(x1[2]* x1[3])∧(x0[2]* x0[3])∧(x2[2]* x2[3]))


(1) -> (6), if ((x1[1]* x1[6])∧(x0[1]* x0[6])∧(x2[1]* x2[6]))


(3) -> (8), if ((x1[3]* x1[8])∧(x2[3]* x2[8])∧(x0[3]* x0[8]))



The set Q is empty.

(11) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(x2[0] < x0[0], x1[0], x2[0], x0[0])
(3): COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
(2): 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(x2[2] >= x1[2] && x2[2] >= x0[2], x1[2], x0[2], x2[2])
(1): COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1])
(8): 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(x2[8] >= x0[8] && x2[8] < x1[8], x1[8], x2[8], x0[8])

(3) -> (0), if ((x1[3]* x1[0])∧(x2[3]* x2[0])∧(x0[3]* x0[0]))


(0) -> (1), if ((x2[0] < x0[0]* TRUE)∧(x1[0]* x1[1])∧(x2[0]* x2[1])∧(x0[0]* x0[1]))


(8) -> (1), if ((x2[8] >= x0[8] && x2[8] < x1[8]* TRUE)∧(x1[8]* x1[1])∧(x2[8]* x2[1])∧(x0[8]* x0[1]))


(1) -> (2), if ((x1[1]* x1[2])∧(x0[1]* x0[2])∧(x2[1]* x2[2]))


(2) -> (3), if ((x2[2] >= x1[2] && x2[2] >= x0[2]* TRUE)∧(x1[2]* x1[3])∧(x0[2]* x0[3])∧(x2[2]* x2[3]))


(3) -> (8), if ((x1[3]* x1[8])∧(x2[3]* x2[8])∧(x0[3]* x0[8]))



The set Q is empty.

(13) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0]) the following chains were created:
  • We consider the chain 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2]), COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]), 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0]), COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]) which results in the following constraint:

    (1)    (&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUEx1[2]=x1[3]x0[2]=x0[3]x2[2]=x2[3]x1[3]=x1[0]x2[3]=x2[0]x0[3]=x0[0]<(x2[0], x0[0])=TRUEx1[0]=x1[1]x2[0]=x2[1]x0[0]=x0[1]1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (<(x2[2], x0[2])=TRUE>=(x2[2], x1[2])=TRUE>=(x2[2], x0[2])=TRUE1482_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1482_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥COND_1482_0_MAIN_LOAD(<(x2[2], x0[2]), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[2] + [-1] + [-1]x2[2] ≥ 0∧x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_13] + [(2)bni_13]x2[2] + [(-1)bni_13]x0[2] + [(-1)bni_13]x1[2] ≥ 0∧[-1 + (-1)bso_14] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[2] + [-1] + [-1]x2[2] ≥ 0∧x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_13] + [(2)bni_13]x2[2] + [(-1)bni_13]x0[2] + [(-1)bni_13]x1[2] ≥ 0∧[-1 + (-1)bso_14] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[2] + [-1] + [-1]x2[2] ≥ 0∧x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_13] + [(2)bni_13]x2[2] + [(-1)bni_13]x0[2] + [(-1)bni_13]x1[2] ≥ 0∧[-1 + (-1)bso_14] ≥ 0)



    We solved constraint (5) using rule (IDP_SMT_SPLIT).




For Pair COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]) the following chains were created:
  • We consider the chain COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]), 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2]), COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]), 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0]) which results in the following constraint:

    (6)    (x1[1]=x1[2]x0[1]=x0[2]x2[1]=x2[2]&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUEx1[2]=x1[3]x0[2]=x0[3]x2[2]=x2[3]x1[3]=x1[0]x2[3]=x2[0]x0[3]=x0[0]COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))



    We simplified constraint (6) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (7)    (>=(x2[2], x1[2])=TRUE>=(x2[2], x0[2])=TRUECOND_1497_0_MAIN_LE(TRUE, x1[2], x0[2], x2[2])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[2], x0[2], x2[2])≥1482_0_MAIN_LOAD(x1[2], x2[2], x0[2])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] + [(-1)bni_15]x1[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] + [(-1)bni_15]x1[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] + [(-1)bni_15]x1[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x2[2] ≥ 0∧x1[2] + x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x1[2] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (13)    (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)


    (14)    (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



  • We consider the chain COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]), 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2]), COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]), 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8]) which results in the following constraint:

    (15)    (x1[1]=x1[2]x0[1]=x0[2]x2[1]=x2[2]&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUEx1[2]=x1[3]x0[2]=x0[3]x2[2]=x2[3]x1[3]=x1[8]x2[3]=x2[8]x0[3]=x0[8]COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))



    We simplified constraint (15) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (16)    (>=(x2[2], x1[2])=TRUE>=(x2[2], x0[2])=TRUECOND_1497_0_MAIN_LE(TRUE, x1[2], x0[2], x2[2])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[2], x0[2], x2[2])≥1482_0_MAIN_LOAD(x1[2], x2[2], x0[2])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))



    We simplified constraint (16) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (17)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] + [(-1)bni_15]x1[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (17) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (18)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] + [(-1)bni_15]x1[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (18) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (19)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] + [(-1)bni_15]x1[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (19) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (20)    (x2[2] ≥ 0∧x1[2] + x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x1[2] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (20) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (21)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (21) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (22)    (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)


    (23)    (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)







For Pair 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2]) the following chains were created:
  • We consider the chain 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0]), COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]), 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2]), COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]) which results in the following constraint:

    (24)    (<(x2[0], x0[0])=TRUEx1[0]=x1[1]x2[0]=x2[1]x0[0]=x0[1]x1[1]=x1[2]x0[1]=x0[2]x2[1]=x2[2]&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUEx1[2]=x1[3]x0[2]=x0[3]x2[2]=x2[3]1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥NonInfC∧1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))



    We simplified constraint (24) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (25)    (<(x2[0], x0[0])=TRUE>=(x2[0], x1[2])=TRUE>=(x2[0], x0[0])=TRUE1497_0_MAIN_LE(x1[2], x0[0], x2[0])≥NonInfC∧1497_0_MAIN_LE(x1[2], x0[0], x2[0])≥COND_1497_0_MAIN_LE(&&(>=(x2[0], x1[2]), >=(x2[0], x0[0])), x1[2], x0[0], x2[0])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))



    We simplified constraint (25) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (26)    (x0[0] + [-1] + [-1]x2[0] ≥ 0∧x2[0] + [-1]x1[2] ≥ 0∧x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x2[0] + [(-1)bni_17]x0[0] + [(-1)bni_17]x1[2] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)



    We simplified constraint (26) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (27)    (x0[0] + [-1] + [-1]x2[0] ≥ 0∧x2[0] + [-1]x1[2] ≥ 0∧x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x2[0] + [(-1)bni_17]x0[0] + [(-1)bni_17]x1[2] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)



    We simplified constraint (27) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (28)    (x0[0] + [-1] + [-1]x2[0] ≥ 0∧x2[0] + [-1]x1[2] ≥ 0∧x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x2[0] + [(-1)bni_17]x0[0] + [(-1)bni_17]x1[2] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)



    We solved constraint (28) using rule (IDP_SMT_SPLIT).
  • We consider the chain 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8]), COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]), 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2]), COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]) which results in the following constraint:

    (29)    (&&(>=(x2[8], x0[8]), <(x2[8], x1[8]))=TRUEx1[8]=x1[1]x2[8]=x2[1]x0[8]=x0[1]x1[1]=x1[2]x0[1]=x0[2]x2[1]=x2[2]&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUEx1[2]=x1[3]x0[2]=x0[3]x2[2]=x2[3]1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥NonInfC∧1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))



    We simplified constraint (29) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (30)    (>=(x2[8], x0[8])=TRUE<(x2[8], x1[8])=TRUE>=(x2[8], x1[8])=TRUE1497_0_MAIN_LE(x1[8], x0[8], x2[8])≥NonInfC∧1497_0_MAIN_LE(x1[8], x0[8], x2[8])≥COND_1497_0_MAIN_LE(&&(>=(x2[8], x1[8]), >=(x2[8], x0[8])), x1[8], x0[8], x2[8])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))



    We simplified constraint (30) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (31)    (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0∧x2[8] + [-1]x1[8] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x2[8] + [(-1)bni_17]x0[8] + [(-1)bni_17]x1[8] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)



    We simplified constraint (31) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (32)    (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0∧x2[8] + [-1]x1[8] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x2[8] + [(-1)bni_17]x0[8] + [(-1)bni_17]x1[8] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)



    We simplified constraint (32) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (33)    (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0∧x2[8] + [-1]x1[8] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x2[8] + [(-1)bni_17]x0[8] + [(-1)bni_17]x1[8] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)



    We solved constraint (33) using rule (IDP_SMT_SPLIT).




For Pair COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]) the following chains were created:
  • We consider the chain COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]), 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0]), COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]), 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2]) which results in the following constraint:

    (34)    (x1[3]=x1[0]x2[3]=x2[0]x0[3]=x0[0]<(x2[0], x0[0])=TRUEx1[0]=x1[1]x2[0]=x2[1]x0[0]=x0[1]x1[1]=x1[2]x0[1]=x0[2]x2[1]=x2[2]COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))



    We simplified constraint (34) using rules (III), (IV) which results in the following new constraint:

    (35)    (<(x2[0], x0[0])=TRUECOND_1482_0_MAIN_LOAD(TRUE, x1[3], x2[0], x0[0])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[3], x2[0], x0[0])≥1497_0_MAIN_LE(x1[3], x0[0], x2[0])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))



    We simplified constraint (35) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (36)    (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x0[0] + [(-1)bni_19]x1[3] ≥ 0∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (36) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (37)    (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x0[0] + [(-1)bni_19]x1[3] ≥ 0∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (37) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (38)    (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x0[0] + [(-1)bni_19]x1[3] ≥ 0∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (38) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (39)    (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bni_19] = 0∧[bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x0[0] ≥ 0∧0 = 0∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (39) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (40)    (x0[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bni_19] = 0∧[(-1)Bound*bni_19] + [bni_19]x2[0] + [(-1)bni_19]x0[0] ≥ 0∧0 = 0∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (40) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (41)    (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bni_19] = 0∧[(-1)Bound*bni_19] + [(-1)bni_19]x2[0] + [(-1)bni_19]x0[0] ≥ 0∧0 = 0∧[2 + (-1)bso_20] ≥ 0)


    (42)    (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bni_19] = 0∧[(-1)Bound*bni_19] + [bni_19]x2[0] + [(-1)bni_19]x0[0] ≥ 0∧0 = 0∧[2 + (-1)bso_20] ≥ 0)



  • We consider the chain COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]), 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8]), COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]), 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2]) which results in the following constraint:

    (43)    (x1[3]=x1[8]x2[3]=x2[8]x0[3]=x0[8]&&(>=(x2[8], x0[8]), <(x2[8], x1[8]))=TRUEx1[8]=x1[1]x2[8]=x2[1]x0[8]=x0[1]x1[1]=x1[2]x0[1]=x0[2]x2[1]=x2[2]COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))



    We simplified constraint (43) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (44)    (>=(x2[8], x0[8])=TRUE<(x2[8], x1[8])=TRUECOND_1482_0_MAIN_LOAD(TRUE, x1[8], x2[8], x0[8])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[8], x2[8], x0[8])≥1497_0_MAIN_LE(x1[8], x0[8], x2[8])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))



    We simplified constraint (44) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (45)    (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[8] + [(-1)bni_19]x0[8] + [(-1)bni_19]x1[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (45) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (46)    (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[8] + [(-1)bni_19]x0[8] + [(-1)bni_19]x1[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (46) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (47)    (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[8] + [(-1)bni_19]x0[8] + [(-1)bni_19]x1[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (47) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (48)    (x2[8] ≥ 0∧x1[8] + [-1] + [-1]x0[8] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[8] + [(2)bni_19]x2[8] + [(-1)bni_19]x1[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (48) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (49)    (x2[8] ≥ 0∧x0[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)Bound*bni_19] + [bni_19]x2[8] + [(-1)bni_19]x0[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (49) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (50)    (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)Bound*bni_19] + [bni_19]x2[8] + [(-1)bni_19]x0[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)


    (51)    (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)Bound*bni_19] + [bni_19]x2[8] + [(-1)bni_19]x0[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)







For Pair 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8]) the following chains were created:
  • We consider the chain 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2]), COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3]), 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8]), COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1]) which results in the following constraint:

    (52)    (&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUEx1[2]=x1[3]x0[2]=x0[3]x2[2]=x2[3]x1[3]=x1[8]x2[3]=x2[8]x0[3]=x0[8]&&(>=(x2[8], x0[8]), <(x2[8], x1[8]))=TRUEx1[8]=x1[1]x2[8]=x2[1]x0[8]=x0[1]1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥NonInfC∧1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])∧(UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥))



    We simplified constraint (52) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (53)    (>=(x2[2], x1[2])=TRUE>=(x2[2], x0[2])=TRUE<(x2[2], x1[2])=TRUE1482_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1482_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥COND_1482_0_MAIN_LOAD(&&(>=(x2[2], x0[2]), <(x2[2], x1[2])), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥))



    We simplified constraint (53) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (54)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)Bound*bni_21] + [(2)bni_21]x2[2] + [(-1)bni_21]x0[2] + [(-1)bni_21]x1[2] ≥ 0∧[-1 + (-1)bso_22] ≥ 0)



    We simplified constraint (54) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (55)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)Bound*bni_21] + [(2)bni_21]x2[2] + [(-1)bni_21]x0[2] + [(-1)bni_21]x1[2] ≥ 0∧[-1 + (-1)bso_22] ≥ 0)



    We simplified constraint (55) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (56)    (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)Bound*bni_21] + [(2)bni_21]x2[2] + [(-1)bni_21]x0[2] + [(-1)bni_21]x1[2] ≥ 0∧[-1 + (-1)bso_22] ≥ 0)



    We solved constraint (56) using rule (IDP_SMT_SPLIT).




To summarize, we get the following constraints P for the following pairs.
  • 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])

  • COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
    • (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
    • (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
    • (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
    • (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)

  • 1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])

  • COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1])
    • (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bni_19] = 0∧[(-1)Bound*bni_19] + [(-1)bni_19]x2[0] + [(-1)bni_19]x0[0] ≥ 0∧0 = 0∧[2 + (-1)bso_20] ≥ 0)
    • (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bni_19] = 0∧[(-1)Bound*bni_19] + [bni_19]x2[0] + [(-1)bni_19]x0[0] ≥ 0∧0 = 0∧[2 + (-1)bso_20] ≥ 0)
    • (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)Bound*bni_19] + [bni_19]x2[8] + [(-1)bni_19]x0[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
    • (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)Bound*bni_19] + [bni_19]x2[8] + [(-1)bni_19]x0[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)

  • 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(1482_0_MAIN_LOAD(x1, x2, x3)) = [2]x2 + [-1]x3 + [-1]x1   
POL(COND_1482_0_MAIN_LOAD(x1, x2, x3, x4)) = [1] + [2]x3 + [-1]x4 + [-1]x2   
POL(<(x1, x2)) = [-1]   
POL(COND_1497_0_MAIN_LE(x1, x2, x3, x4)) = [1] + [2]x4 + [-1]x3 + [-1]x2   
POL(1497_0_MAIN_LE(x1, x2, x3)) = [-1] + [2]x3 + [-1]x2 + [-1]x1   
POL(&&(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   

The following pairs are in P>:

1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])
COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])
COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1])
1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])

The following pairs are in Pbound:

1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])
COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])
1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])

The following pairs are in P:
none

There are no usable rules.

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1])


The set Q is empty.

(15) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(16) TRUE