0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇒)
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 IDP
↳13 IDPNonInfProof (⇒)
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB13 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
while (x > z || y > z) {
if (x > z) {
x--;
} else if (y > z) {
y--;
} else {
continue;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 30 rules for P and 2 rules for R.
Combined rules. Obtained 5 rules for P and 0 rules for R.
Filtered ground terms:
1497_0_main_LE(x1, x2, x3, x4, x5, x6) → 1497_0_main_LE(x2, x3, x4, x5, x6)
Cond_1482_0_main_Load1(x1, x2, x3, x4, x5, x6) → Cond_1482_0_main_Load1(x1, x3, x4, x5, x6)
1482_0_main_Load(x1, x2, x3, x4, x5) → 1482_0_main_Load(x2, x3, x4, x5)
Cond_1497_0_main_LE2(x1, x2, x3, x4, x5, x6, x7) → Cond_1497_0_main_LE2(x1, x3, x4, x5, x6, x7)
Cond_1497_0_main_LE1(x1, x2, x3, x4, x5, x6, x7) → Cond_1497_0_main_LE1(x1, x3, x4, x5, x6, x7)
Cond_1497_0_main_LE(x1, x2, x3, x4, x5, x6, x7) → Cond_1497_0_main_LE(x1, x3, x4, x5, x6, x7)
Cond_1482_0_main_Load(x1, x2, x3, x4, x5, x6) → Cond_1482_0_main_Load(x1, x3, x4, x5, x6)
Filtered duplicate args:
1497_0_main_LE(x1, x2, x3, x4, x5) → 1497_0_main_LE(x2, x4, x5)
Cond_1482_0_main_Load1(x1, x2, x3, x4, x5) → Cond_1482_0_main_Load1(x1, x3, x4, x5)
1482_0_main_Load(x1, x2, x3, x4) → 1482_0_main_Load(x2, x3, x4)
Cond_1497_0_main_LE2(x1, x2, x3, x4, x5, x6) → Cond_1497_0_main_LE2(x1, x3, x5, x6)
Cond_1497_0_main_LE1(x1, x2, x3, x4, x5, x6) → Cond_1497_0_main_LE1(x1, x3, x5, x6)
Cond_1497_0_main_LE(x1, x2, x3, x4, x5, x6) → Cond_1497_0_main_LE(x1, x3, x5, x6)
Cond_1482_0_main_Load(x1, x2, x3, x4, x5) → Cond_1482_0_main_Load(x1, x3, x4, x5)
Combined rules. Obtained 5 rules for P and 0 rules for R.
Finished conversion. Obtained 5 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((x2[0] < x0[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
(1) -> (2), if ((x1[1] →* x1[2])∧(x0[1] →* x0[2])∧(x2[1] →* x2[2]))
(1) -> (4), if ((x1[1] →* x1[4])∧(x0[1] →* x0[4])∧(x2[1] →* x2[4]))
(1) -> (6), if ((x1[1] →* x1[6])∧(x0[1] →* x0[6])∧(x2[1] →* x2[6]))
(2) -> (3), if ((x2[2] >= x1[2] && x2[2] >= x0[2] →* TRUE)∧(x1[2] →* x1[3])∧(x0[2] →* x0[3])∧(x2[2] →* x2[3]))
(3) -> (0), if ((x1[3] →* x1[0])∧(x2[3] →* x2[0])∧(x0[3] →* x0[0]))
(3) -> (8), if ((x1[3] →* x1[8])∧(x2[3] →* x2[8])∧(x0[3] →* x0[8]))
(4) -> (5), if ((x2[4] >= x0[4] && x2[4] < x1[4] →* TRUE)∧(x1[4] →* x1[5])∧(x0[4] →* x0[5])∧(x2[4] →* x2[5]))
(5) -> (0), if ((x1[5] + -1 →* x1[0])∧(x2[5] →* x2[0])∧(x0[5] →* x0[0]))
(5) -> (8), if ((x1[5] + -1 →* x1[8])∧(x2[5] →* x2[8])∧(x0[5] →* x0[8]))
(6) -> (7), if ((x2[6] < x0[6] →* TRUE)∧(x1[6] →* x1[7])∧(x0[6] →* x0[7])∧(x2[6] →* x2[7]))
(7) -> (0), if ((x1[7] →* x1[0])∧(x2[7] →* x2[0])∧(x0[7] + -1 →* x0[0]))
(7) -> (8), if ((x1[7] →* x1[8])∧(x2[7] →* x2[8])∧(x0[7] + -1 →* x0[8]))
(8) -> (1), if ((x2[8] >= x0[8] && x2[8] < x1[8] →* TRUE)∧(x1[8] →* x1[1])∧(x2[8] →* x2[1])∧(x0[8] →* x0[1]))
(1) (<(x2[0], x0[0])=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥))
(2) (<(x2[0], x0[0])=TRUE ⇒ 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥))
(3) (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[0] + [bni_34]x1[0] ≥ 0∧[(-1)bso_35] ≥ 0)
(4) (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[0] + [bni_34]x1[0] ≥ 0∧[(-1)bso_35] ≥ 0)
(5) (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[0] + [bni_34]x1[0] ≥ 0∧[(-1)bso_35] ≥ 0)
(6) (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)
(7) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)
(8) (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]x2[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)
(9) (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)
(10) (x1[1]=x1[2]∧x0[1]=x0[2]∧x2[1]=x2[2] ⇒ COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))
(11) (COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))
(12) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)
(13) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)
(14) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)
(15) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_37] ≥ 0)
(16) (x1[1]=x1[4]∧x0[1]=x0[4]∧x2[1]=x2[4] ⇒ COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))
(17) (COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))
(18) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)
(19) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)
(20) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)
(21) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_37] ≥ 0)
(22) (x1[1]=x1[6]∧x0[1]=x0[6]∧x2[1]=x2[6] ⇒ COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))
(23) (COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))
(24) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)
(25) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)
(26) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_37] ≥ 0)
(27) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_37] ≥ 0)
(28) (&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧x2[2]=x2[3] ⇒ 1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥NonInfC∧1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))
(29) (>=(x2[2], x1[2])=TRUE∧>=(x2[2], x0[2])=TRUE ⇒ 1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥NonInfC∧1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))
(30) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] + [bni_38]x1[2] ≥ 0∧[(-1)bso_39] ≥ 0)
(31) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] + [bni_38]x1[2] ≥ 0∧[(-1)bso_39] ≥ 0)
(32) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] + [bni_38]x1[2] ≥ 0∧[(-1)bso_39] ≥ 0)
(33) (x2[2] ≥ 0∧x1[2] + x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] ≥ 0∧[(-1)bso_39] ≥ 0)
(34) (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] ≥ 0∧[(-1)bso_39] ≥ 0)
(35) (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] ≥ 0∧[(-1)bso_39] ≥ 0)
(36) (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]x2[2] ≥ 0∧[(-1)bso_39] ≥ 0)
(37) (x1[3]=x1[0]∧x2[3]=x2[0]∧x0[3]=x0[0] ⇒ COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))
(38) (COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))
(39) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_41] ≥ 0)
(40) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_41] ≥ 0)
(41) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_41] ≥ 0)
(42) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_41] ≥ 0)
(43) (x1[3]=x1[8]∧x2[3]=x2[8]∧x0[3]=x0[8] ⇒ COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))
(44) (COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))
(45) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_41] ≥ 0)
(46) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_41] ≥ 0)
(47) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_41] ≥ 0)
(48) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_41] ≥ 0)
(49) (&&(>=(x2[4], x0[4]), <(x2[4], x1[4]))=TRUE∧x1[4]=x1[5]∧x0[4]=x0[5]∧x2[4]=x2[5] ⇒ 1497_0_MAIN_LE(x1[4], x0[4], x2[4])≥NonInfC∧1497_0_MAIN_LE(x1[4], x0[4], x2[4])≥COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])∧(UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥))
(50) (>=(x2[4], x0[4])=TRUE∧<(x2[4], x1[4])=TRUE ⇒ 1497_0_MAIN_LE(x1[4], x0[4], x2[4])≥NonInfC∧1497_0_MAIN_LE(x1[4], x0[4], x2[4])≥COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])∧(UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥))
(51) (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]x2[4] + [bni_42]x1[4] ≥ 0∧[(-1)bso_43] ≥ 0)
(52) (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]x2[4] + [bni_42]x1[4] ≥ 0∧[(-1)bso_43] ≥ 0)
(53) (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]x2[4] + [bni_42]x1[4] ≥ 0∧[(-1)bso_43] ≥ 0)
(54) (x2[4] ≥ 0∧x1[4] + [-1] + [-1]x0[4] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]x0[4] + [(-1)bni_42]x2[4] + [bni_42]x1[4] ≥ 0∧[(-1)bso_43] ≥ 0)
(55) (x2[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)Bound*bni_42] + [bni_42]x0[4] ≥ 0∧[(-1)bso_43] ≥ 0)
(56) (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)Bound*bni_42] + [bni_42]x0[4] ≥ 0∧[(-1)bso_43] ≥ 0)
(57) (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])), ≥)∧[(-1)Bound*bni_42] + [bni_42]x0[4] ≥ 0∧[(-1)bso_43] ≥ 0)
(58) (&&(>=(x2[4], x0[4]), <(x2[4], x1[4]))=TRUE∧x1[4]=x1[5]∧x0[4]=x0[5]∧x2[4]=x2[5]∧+(x1[5], -1)=x1[0]∧x2[5]=x2[0]∧x0[5]=x0[0] ⇒ COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5])≥NonInfC∧COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5])≥1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])∧(UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥))
(59) (>=(x2[4], x0[4])=TRUE∧<(x2[4], x1[4])=TRUE ⇒ COND_1497_0_MAIN_LE1(TRUE, x1[4], x0[4], x2[4])≥NonInfC∧COND_1497_0_MAIN_LE1(TRUE, x1[4], x0[4], x2[4])≥1482_0_MAIN_LOAD(+(x1[4], -1), x2[4], x0[4])∧(UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥))
(60) (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(61) (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(62) (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(63) (x2[4] ≥ 0∧x1[4] + [-1] + [-1]x0[4] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x0[4] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(64) (x2[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(65) (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(66) (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(67) (&&(>=(x2[4], x0[4]), <(x2[4], x1[4]))=TRUE∧x1[4]=x1[5]∧x0[4]=x0[5]∧x2[4]=x2[5]∧+(x1[5], -1)=x1[8]∧x2[5]=x2[8]∧x0[5]=x0[8] ⇒ COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5])≥NonInfC∧COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5])≥1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])∧(UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥))
(68) (>=(x2[4], x0[4])=TRUE∧<(x2[4], x1[4])=TRUE ⇒ COND_1497_0_MAIN_LE1(TRUE, x1[4], x0[4], x2[4])≥NonInfC∧COND_1497_0_MAIN_LE1(TRUE, x1[4], x0[4], x2[4])≥1482_0_MAIN_LOAD(+(x1[4], -1), x2[4], x0[4])∧(UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥))
(69) (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(70) (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(71) (x2[4] + [-1]x0[4] ≥ 0∧x1[4] + [-1] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(72) (x2[4] ≥ 0∧x1[4] + [-1] + [-1]x0[4] + [-1]x2[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]x0[4] + [(-1)bni_44]x2[4] + [bni_44]x1[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(73) (x2[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(74) (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(75) (x2[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])), ≥)∧[(-1)Bound*bni_44] + [bni_44]x0[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(76) (<(x2[6], x0[6])=TRUE∧x1[6]=x1[7]∧x0[6]=x0[7]∧x2[6]=x2[7] ⇒ 1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥NonInfC∧1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])∧(UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥))
(77) (<(x2[6], x0[6])=TRUE ⇒ 1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥NonInfC∧1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])∧(UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥))
(78) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]x2[6] + [bni_46]x1[6] ≥ 0∧[(-1)bso_47] ≥ 0)
(79) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]x2[6] + [bni_46]x1[6] ≥ 0∧[(-1)bso_47] ≥ 0)
(80) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]x2[6] + [bni_46]x1[6] ≥ 0∧[(-1)bso_47] ≥ 0)
(81) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[bni_46] = 0∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]x2[6] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(82) (x0[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[bni_46] = 0∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]x2[6] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(83) (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[bni_46] = 0∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]x2[6] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(84) (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[bni_46] = 0∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]x2[6] ≥ 0∧0 = 0∧[(-1)bso_47] ≥ 0)
(85) (<(x2[6], x0[6])=TRUE∧x1[6]=x1[7]∧x0[6]=x0[7]∧x2[6]=x2[7]∧x1[7]=x1[0]∧x2[7]=x2[0]∧+(x0[7], -1)=x0[0] ⇒ COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))
(86) (<(x2[6], x0[6])=TRUE ⇒ COND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥1482_0_MAIN_LOAD(x1[6], x2[6], +(x0[6], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))
(87) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] + [bni_48]x1[6] ≥ 0∧[(-1)bso_49] ≥ 0)
(88) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] + [bni_48]x1[6] ≥ 0∧[(-1)bso_49] ≥ 0)
(89) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] + [bni_48]x1[6] ≥ 0∧[(-1)bso_49] ≥ 0)
(90) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)
(91) (x0[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)
(92) (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)
(93) (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)
(94) (<(x2[6], x0[6])=TRUE∧x1[6]=x1[7]∧x0[6]=x0[7]∧x2[6]=x2[7]∧x1[7]=x1[8]∧x2[7]=x2[8]∧+(x0[7], -1)=x0[8] ⇒ COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))
(95) (<(x2[6], x0[6])=TRUE ⇒ COND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥1482_0_MAIN_LOAD(x1[6], x2[6], +(x0[6], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))
(96) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] + [bni_48]x1[6] ≥ 0∧[(-1)bso_49] ≥ 0)
(97) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] + [bni_48]x1[6] ≥ 0∧[(-1)bso_49] ≥ 0)
(98) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] + [bni_48]x1[6] ≥ 0∧[(-1)bso_49] ≥ 0)
(99) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)
(100) (x0[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)
(101) (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)
(102) (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[bni_48] = 0∧[(-1)bni_48 + (-1)Bound*bni_48] + [bni_48]x2[6] ≥ 0∧0 = 0∧[(-1)bso_49] ≥ 0)
(103) (&&(>=(x2[8], x0[8]), <(x2[8], x1[8]))=TRUE∧x1[8]=x1[1]∧x2[8]=x2[1]∧x0[8]=x0[1] ⇒ 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥NonInfC∧1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])∧(UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥))
(104) (>=(x2[8], x0[8])=TRUE∧<(x2[8], x1[8])=TRUE ⇒ 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥NonInfC∧1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])∧(UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥))
(105) (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_50 + (-1)Bound*bni_50] + [(-1)bni_50]x2[8] + [bni_50]x1[8] ≥ 0∧[(-1)bso_51] ≥ 0)
(106) (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_50 + (-1)Bound*bni_50] + [(-1)bni_50]x2[8] + [bni_50]x1[8] ≥ 0∧[(-1)bso_51] ≥ 0)
(107) (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_50 + (-1)Bound*bni_50] + [(-1)bni_50]x2[8] + [bni_50]x1[8] ≥ 0∧[(-1)bso_51] ≥ 0)
(108) (x2[8] ≥ 0∧x1[8] + [-1] + [-1]x0[8] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_50 + (-1)Bound*bni_50] + [(-1)bni_50]x0[8] + [(-1)bni_50]x2[8] + [bni_50]x1[8] ≥ 0∧[(-1)bso_51] ≥ 0)
(109) (x2[8] ≥ 0∧x0[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)Bound*bni_50] + [bni_50]x0[8] ≥ 0∧[(-1)bso_51] ≥ 0)
(110) (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)Bound*bni_50] + [bni_50]x0[8] ≥ 0∧[(-1)bso_51] ≥ 0)
(111) (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)Bound*bni_50] + [bni_50]x0[8] ≥ 0∧[(-1)bso_51] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [3]
POL(1482_0_MAIN_LOAD(x1, x2, x3)) = [-1] + [-1]x2 + x1
POL(COND_1482_0_MAIN_LOAD(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2
POL(<(x1, x2)) = [-1]
POL(1497_0_MAIN_LE(x1, x2, x3)) = [-1] + [-1]x3 + x1
POL(COND_1497_0_MAIN_LE(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(COND_1497_0_MAIN_LE1(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_1497_0_MAIN_LE2(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2
COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5]) → 1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])
1497_0_MAIN_LE(x1[4], x0[4], x2[4]) → COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])
COND_1497_0_MAIN_LE1(TRUE, x1[5], x0[5], x2[5]) → 1482_0_MAIN_LOAD(+(x1[5], -1), x2[5], x0[5])
1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])
1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])
COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1])
1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])
COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
1497_0_MAIN_LE(x1[4], x0[4], x2[4]) → COND_1497_0_MAIN_LE1(&&(>=(x2[4], x0[4]), <(x2[4], x1[4])), x1[4], x0[4], x2[4])
1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])
COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))
1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (0), if ((x1[3] →* x1[0])∧(x2[3] →* x2[0])∧(x0[3] →* x0[0]))
(7) -> (0), if ((x1[7] →* x1[0])∧(x2[7] →* x2[0])∧(x0[7] + -1 →* x0[0]))
(0) -> (1), if ((x2[0] < x0[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
(8) -> (1), if ((x2[8] >= x0[8] && x2[8] < x1[8] →* TRUE)∧(x1[8] →* x1[1])∧(x2[8] →* x2[1])∧(x0[8] →* x0[1]))
(1) -> (2), if ((x1[1] →* x1[2])∧(x0[1] →* x0[2])∧(x2[1] →* x2[2]))
(2) -> (3), if ((x2[2] >= x1[2] && x2[2] >= x0[2] →* TRUE)∧(x1[2] →* x1[3])∧(x0[2] →* x0[3])∧(x2[2] →* x2[3]))
(1) -> (4), if ((x1[1] →* x1[4])∧(x0[1] →* x0[4])∧(x2[1] →* x2[4]))
(1) -> (6), if ((x1[1] →* x1[6])∧(x0[1] →* x0[6])∧(x2[1] →* x2[6]))
(6) -> (7), if ((x2[6] < x0[6] →* TRUE)∧(x1[6] →* x1[7])∧(x0[6] →* x0[7])∧(x2[6] →* x2[7]))
(3) -> (8), if ((x1[3] →* x1[8])∧(x2[3] →* x2[8])∧(x0[3] →* x0[8]))
(7) -> (8), if ((x1[7] →* x1[8])∧(x2[7] →* x2[8])∧(x0[7] + -1 →* x0[8]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (0), if ((x1[3] →* x1[0])∧(x2[3] →* x2[0])∧(x0[3] →* x0[0]))
(7) -> (0), if ((x1[7] →* x1[0])∧(x2[7] →* x2[0])∧(x0[7] + -1 →* x0[0]))
(0) -> (1), if ((x2[0] < x0[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
(8) -> (1), if ((x2[8] >= x0[8] && x2[8] < x1[8] →* TRUE)∧(x1[8] →* x1[1])∧(x2[8] →* x2[1])∧(x0[8] →* x0[1]))
(1) -> (2), if ((x1[1] →* x1[2])∧(x0[1] →* x0[2])∧(x2[1] →* x2[2]))
(2) -> (3), if ((x2[2] >= x1[2] && x2[2] >= x0[2] →* TRUE)∧(x1[2] →* x1[3])∧(x0[2] →* x0[3])∧(x2[2] →* x2[3]))
(1) -> (6), if ((x1[1] →* x1[6])∧(x0[1] →* x0[6])∧(x2[1] →* x2[6]))
(6) -> (7), if ((x2[6] < x0[6] →* TRUE)∧(x1[6] →* x1[7])∧(x0[6] →* x0[7])∧(x2[6] →* x2[7]))
(3) -> (8), if ((x1[3] →* x1[8])∧(x2[3] →* x2[8])∧(x0[3] →* x0[8]))
(7) -> (8), if ((x1[7] →* x1[8])∧(x2[7] →* x2[8])∧(x0[7] + -1 →* x0[8]))
(1) (<(x2[6], x0[6])=TRUE∧x1[6]=x1[7]∧x0[6]=x0[7]∧x2[6]=x2[7]∧x1[7]=x1[0]∧x2[7]=x2[0]∧+(x0[7], -1)=x0[0] ⇒ COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))
(2) (<(x2[6], x0[6])=TRUE ⇒ COND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥1482_0_MAIN_LOAD(x1[6], x2[6], +(x0[6], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))
(3) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧[1 + (-1)bso_30] ≥ 0)
(4) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧[1 + (-1)bso_30] ≥ 0)
(5) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧[1 + (-1)bso_30] ≥ 0)
(6) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)
(7) (x0[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)
(8) (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)
(9) (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)
(10) (<(x2[6], x0[6])=TRUE∧x1[6]=x1[7]∧x0[6]=x0[7]∧x2[6]=x2[7]∧x1[7]=x1[8]∧x2[7]=x2[8]∧+(x0[7], -1)=x0[8] ⇒ COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7])≥1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))
(11) (<(x2[6], x0[6])=TRUE ⇒ COND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥NonInfC∧COND_1497_0_MAIN_LE2(TRUE, x1[6], x0[6], x2[6])≥1482_0_MAIN_LOAD(x1[6], x2[6], +(x0[6], -1))∧(UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥))
(12) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧[1 + (-1)bso_30] ≥ 0)
(13) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧[1 + (-1)bso_30] ≥ 0)
(14) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧[1 + (-1)bso_30] ≥ 0)
(15) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)bni_29 + (-1)Bound*bni_29] + [(-1)bni_29]x2[6] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)
(16) (x0[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)
(17) (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)
(18) (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]x0[6] ≥ 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)
(19) (<(x2[6], x0[6])=TRUE∧x1[6]=x1[7]∧x0[6]=x0[7]∧x2[6]=x2[7] ⇒ 1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥NonInfC∧1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])∧(UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥))
(20) (<(x2[6], x0[6])=TRUE ⇒ 1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥NonInfC∧1497_0_MAIN_LE(x1[6], x0[6], x2[6])≥COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])∧(UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥))
(21) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-1)bni_31]x2[6] + [bni_31]x0[6] ≥ 0∧[(-1)bso_32] ≥ 0)
(22) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-1)bni_31]x2[6] + [bni_31]x0[6] ≥ 0∧[(-1)bso_32] ≥ 0)
(23) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-1)bni_31]x2[6] + [bni_31]x0[6] ≥ 0∧[(-1)bso_32] ≥ 0)
(24) (x0[6] + [-1] + [-1]x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧0 = 0∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-1)bni_31]x2[6] + [bni_31]x0[6] ≥ 0∧0 = 0∧[(-1)bso_32] ≥ 0)
(25) (x0[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧0 = 0∧[(-1)Bound*bni_31] + [bni_31]x0[6] ≥ 0∧0 = 0∧[(-1)bso_32] ≥ 0)
(26) (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧0 = 0∧[(-1)Bound*bni_31] + [bni_31]x0[6] ≥ 0∧0 = 0∧[(-1)bso_32] ≥ 0)
(27) (x0[6] ≥ 0∧x2[6] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])), ≥)∧0 = 0∧[(-1)Bound*bni_31] + [bni_31]x0[6] ≥ 0∧0 = 0∧[(-1)bso_32] ≥ 0)
(28) (&&(>=(x2[8], x0[8]), <(x2[8], x1[8]))=TRUE∧x1[8]=x1[1]∧x2[8]=x2[1]∧x0[8]=x0[1] ⇒ 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥NonInfC∧1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])∧(UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥))
(29) (>=(x2[8], x0[8])=TRUE∧<(x2[8], x1[8])=TRUE ⇒ 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥NonInfC∧1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])∧(UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥))
(30) (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[8] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)
(31) (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[8] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)
(32) (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[8] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)
(33) (x2[8] ≥ 0∧x1[8] + [-1] + [-1]x0[8] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)
(34) (x2[8] ≥ 0∧x0[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)
(35) (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)
(36) (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [(-1)bni_33]x2[8] ≥ 0∧[(-1)bso_34] ≥ 0)
(37) (x1[3]=x1[0]∧x2[3]=x2[0]∧x0[3]=x0[0] ⇒ COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))
(38) (COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))
(39) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_36] ≥ 0)
(40) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_36] ≥ 0)
(41) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_36] ≥ 0)
(42) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_36] ≥ 0)
(43) (x1[3]=x1[8]∧x2[3]=x2[8]∧x0[3]=x0[8] ⇒ COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))
(44) (COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))
(45) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_36] ≥ 0)
(46) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_36] ≥ 0)
(47) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[(-1)bso_36] ≥ 0)
(48) ((UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_36] ≥ 0)
(49) (&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧x2[2]=x2[3] ⇒ 1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥NonInfC∧1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))
(50) (>=(x2[2], x1[2])=TRUE∧>=(x2[2], x0[2])=TRUE ⇒ 1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥NonInfC∧1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))
(51) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x2[2] + [bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)
(52) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x2[2] + [bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)
(53) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x2[2] + [bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)
(54) (x2[2] ≥ 0∧x1[2] + x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x1[2] + [(-1)bni_37]x2[2] + [bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)
(55) (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)
(56) (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)
(57) (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_37 + (-1)Bound*bni_37] + [(-1)bni_37]x0[2] ≥ 0∧[(-1)bso_38] ≥ 0)
(58) (x1[1]=x1[2]∧x0[1]=x0[2]∧x2[1]=x2[2] ⇒ COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))
(59) (COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))
(60) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)
(61) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)
(62) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)
(63) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_40] ≥ 0)
(64) (x1[1]=x1[6]∧x0[1]=x0[6]∧x2[1]=x2[6] ⇒ COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))
(65) (COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))
(66) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)
(67) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)
(68) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)
(69) ((UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_40] ≥ 0)
(70) (<(x2[0], x0[0])=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥))
(71) (<(x2[0], x0[0])=TRUE ⇒ 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥))
(72) (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]x0[0] + [(-1)bni_41]x2[0] ≥ 0∧[(-1)bso_42] ≥ 0)
(73) (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]x0[0] + [(-1)bni_41]x2[0] ≥ 0∧[(-1)bso_42] ≥ 0)
(74) (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]x0[0] + [(-1)bni_41]x2[0] ≥ 0∧[(-1)bso_42] ≥ 0)
(75) (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧0 = 0∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]x0[0] + [(-1)bni_41]x2[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(76) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]x0[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(77) (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]x0[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(78) (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]x0[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1497_0_MAIN_LE2(x1, x2, x3, x4)) = [-1] + [-1]x4 + x3
POL(1482_0_MAIN_LOAD(x1, x2, x3)) = [-1] + x3 + [-1]x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(1497_0_MAIN_LE(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(<(x1, x2)) = [-1]
POL(COND_1482_0_MAIN_LOAD(x1, x2, x3, x4)) = [-1] + x4 + [-1]x3
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(COND_1497_0_MAIN_LE(x1, x2, x3, x4)) = [-1] + [-1]x4 + x3
COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))
COND_1497_0_MAIN_LE2(TRUE, x1[7], x0[7], x2[7]) → 1482_0_MAIN_LOAD(x1[7], x2[7], +(x0[7], -1))
1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])
1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])
1497_0_MAIN_LE(x1[6], x0[6], x2[6]) → COND_1497_0_MAIN_LE2(<(x2[6], x0[6]), x1[6], x0[6], x2[6])
1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])
COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])
COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1])
1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (0), if ((x1[3] →* x1[0])∧(x2[3] →* x2[0])∧(x0[3] →* x0[0]))
(0) -> (1), if ((x2[0] < x0[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
(8) -> (1), if ((x2[8] >= x0[8] && x2[8] < x1[8] →* TRUE)∧(x1[8] →* x1[1])∧(x2[8] →* x2[1])∧(x0[8] →* x0[1]))
(1) -> (2), if ((x1[1] →* x1[2])∧(x0[1] →* x0[2])∧(x2[1] →* x2[2]))
(2) -> (3), if ((x2[2] >= x1[2] && x2[2] >= x0[2] →* TRUE)∧(x1[2] →* x1[3])∧(x0[2] →* x0[3])∧(x2[2] →* x2[3]))
(1) -> (6), if ((x1[1] →* x1[6])∧(x0[1] →* x0[6])∧(x2[1] →* x2[6]))
(3) -> (8), if ((x1[3] →* x1[8])∧(x2[3] →* x2[8])∧(x0[3] →* x0[8]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (0), if ((x1[3] →* x1[0])∧(x2[3] →* x2[0])∧(x0[3] →* x0[0]))
(0) -> (1), if ((x2[0] < x0[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
(8) -> (1), if ((x2[8] >= x0[8] && x2[8] < x1[8] →* TRUE)∧(x1[8] →* x1[1])∧(x2[8] →* x2[1])∧(x0[8] →* x0[1]))
(1) -> (2), if ((x1[1] →* x1[2])∧(x0[1] →* x0[2])∧(x2[1] →* x2[2]))
(2) -> (3), if ((x2[2] >= x1[2] && x2[2] >= x0[2] →* TRUE)∧(x1[2] →* x1[3])∧(x0[2] →* x0[3])∧(x2[2] →* x2[3]))
(3) -> (8), if ((x1[3] →* x1[8])∧(x2[3] →* x2[8])∧(x0[3] →* x0[8]))
(1) (&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧x2[2]=x2[3]∧x1[3]=x1[0]∧x2[3]=x2[0]∧x0[3]=x0[0]∧<(x2[0], x0[0])=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1482_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥))
(2) (<(x2[2], x0[2])=TRUE∧>=(x2[2], x1[2])=TRUE∧>=(x2[2], x0[2])=TRUE ⇒ 1482_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1482_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥COND_1482_0_MAIN_LOAD(<(x2[2], x0[2]), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥))
(3) (x0[2] + [-1] + [-1]x2[2] ≥ 0∧x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_13] + [(2)bni_13]x2[2] + [(-1)bni_13]x0[2] + [(-1)bni_13]x1[2] ≥ 0∧[-1 + (-1)bso_14] ≥ 0)
(4) (x0[2] + [-1] + [-1]x2[2] ≥ 0∧x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_13] + [(2)bni_13]x2[2] + [(-1)bni_13]x0[2] + [(-1)bni_13]x1[2] ≥ 0∧[-1 + (-1)bso_14] ≥ 0)
(5) (x0[2] + [-1] + [-1]x2[2] ≥ 0∧x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_13] + [(2)bni_13]x2[2] + [(-1)bni_13]x0[2] + [(-1)bni_13]x1[2] ≥ 0∧[-1 + (-1)bso_14] ≥ 0)
(6) (x1[1]=x1[2]∧x0[1]=x0[2]∧x2[1]=x2[2]∧&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧x2[2]=x2[3]∧x1[3]=x1[0]∧x2[3]=x2[0]∧x0[3]=x0[0] ⇒ COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))
(7) (>=(x2[2], x1[2])=TRUE∧>=(x2[2], x0[2])=TRUE ⇒ COND_1497_0_MAIN_LE(TRUE, x1[2], x0[2], x2[2])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[2], x0[2], x2[2])≥1482_0_MAIN_LOAD(x1[2], x2[2], x0[2])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))
(8) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] + [(-1)bni_15]x1[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(9) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] + [(-1)bni_15]x1[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(10) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] + [(-1)bni_15]x1[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(11) (x2[2] ≥ 0∧x1[2] + x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x1[2] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(12) (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(13) (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(14) (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(15) (x1[1]=x1[2]∧x0[1]=x0[2]∧x2[1]=x2[2]∧&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧x2[2]=x2[3]∧x1[3]=x1[8]∧x2[3]=x2[8]∧x0[3]=x0[8] ⇒ COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3])≥1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))
(16) (>=(x2[2], x1[2])=TRUE∧>=(x2[2], x0[2])=TRUE ⇒ COND_1497_0_MAIN_LE(TRUE, x1[2], x0[2], x2[2])≥NonInfC∧COND_1497_0_MAIN_LE(TRUE, x1[2], x0[2], x2[2])≥1482_0_MAIN_LOAD(x1[2], x2[2], x0[2])∧(UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥))
(17) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] + [(-1)bni_15]x1[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(18) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] + [(-1)bni_15]x1[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(19) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] + [(-1)bni_15]x1[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(20) (x2[2] ≥ 0∧x1[2] + x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x1[2] + [(2)bni_15]x2[2] + [(-1)bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(21) (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(22) (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(23) (x2[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] + [bni_15]x0[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(24) (<(x2[0], x0[0])=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1]∧x1[1]=x1[2]∧x0[1]=x0[2]∧x2[1]=x2[2]∧&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧x2[2]=x2[3] ⇒ 1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥NonInfC∧1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))
(25) (<(x2[0], x0[0])=TRUE∧>=(x2[0], x1[2])=TRUE∧>=(x2[0], x0[0])=TRUE ⇒ 1497_0_MAIN_LE(x1[2], x0[0], x2[0])≥NonInfC∧1497_0_MAIN_LE(x1[2], x0[0], x2[0])≥COND_1497_0_MAIN_LE(&&(>=(x2[0], x1[2]), >=(x2[0], x0[0])), x1[2], x0[0], x2[0])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))
(26) (x0[0] + [-1] + [-1]x2[0] ≥ 0∧x2[0] + [-1]x1[2] ≥ 0∧x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x2[0] + [(-1)bni_17]x0[0] + [(-1)bni_17]x1[2] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)
(27) (x0[0] + [-1] + [-1]x2[0] ≥ 0∧x2[0] + [-1]x1[2] ≥ 0∧x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x2[0] + [(-1)bni_17]x0[0] + [(-1)bni_17]x1[2] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)
(28) (x0[0] + [-1] + [-1]x2[0] ≥ 0∧x2[0] + [-1]x1[2] ≥ 0∧x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x2[0] + [(-1)bni_17]x0[0] + [(-1)bni_17]x1[2] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)
(29) (&&(>=(x2[8], x0[8]), <(x2[8], x1[8]))=TRUE∧x1[8]=x1[1]∧x2[8]=x2[1]∧x0[8]=x0[1]∧x1[1]=x1[2]∧x0[1]=x0[2]∧x2[1]=x2[2]∧&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧x2[2]=x2[3] ⇒ 1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥NonInfC∧1497_0_MAIN_LE(x1[2], x0[2], x2[2])≥COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))
(30) (>=(x2[8], x0[8])=TRUE∧<(x2[8], x1[8])=TRUE∧>=(x2[8], x1[8])=TRUE ⇒ 1497_0_MAIN_LE(x1[8], x0[8], x2[8])≥NonInfC∧1497_0_MAIN_LE(x1[8], x0[8], x2[8])≥COND_1497_0_MAIN_LE(&&(>=(x2[8], x1[8]), >=(x2[8], x0[8])), x1[8], x0[8], x2[8])∧(UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥))
(31) (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0∧x2[8] + [-1]x1[8] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x2[8] + [(-1)bni_17]x0[8] + [(-1)bni_17]x1[8] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)
(32) (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0∧x2[8] + [-1]x1[8] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x2[8] + [(-1)bni_17]x0[8] + [(-1)bni_17]x1[8] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)
(33) (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0∧x2[8] + [-1]x1[8] ≥ 0 ⇒ (UIncreasing(COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x2[8] + [(-1)bni_17]x0[8] + [(-1)bni_17]x1[8] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)
(34) (x1[3]=x1[0]∧x2[3]=x2[0]∧x0[3]=x0[0]∧<(x2[0], x0[0])=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1]∧x1[1]=x1[2]∧x0[1]=x0[2]∧x2[1]=x2[2] ⇒ COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))
(35) (<(x2[0], x0[0])=TRUE ⇒ COND_1482_0_MAIN_LOAD(TRUE, x1[3], x2[0], x0[0])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[3], x2[0], x0[0])≥1497_0_MAIN_LE(x1[3], x0[0], x2[0])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))
(36) (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x0[0] + [(-1)bni_19]x1[3] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
(37) (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x0[0] + [(-1)bni_19]x1[3] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
(38) (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x0[0] + [(-1)bni_19]x1[3] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
(39) (x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bni_19] = 0∧[bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x0[0] ≥ 0∧0 = 0∧[2 + (-1)bso_20] ≥ 0)
(40) (x0[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bni_19] = 0∧[(-1)Bound*bni_19] + [bni_19]x2[0] + [(-1)bni_19]x0[0] ≥ 0∧0 = 0∧[2 + (-1)bso_20] ≥ 0)
(41) (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bni_19] = 0∧[(-1)Bound*bni_19] + [(-1)bni_19]x2[0] + [(-1)bni_19]x0[0] ≥ 0∧0 = 0∧[2 + (-1)bso_20] ≥ 0)
(42) (x0[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)bni_19] = 0∧[(-1)Bound*bni_19] + [bni_19]x2[0] + [(-1)bni_19]x0[0] ≥ 0∧0 = 0∧[2 + (-1)bso_20] ≥ 0)
(43) (x1[3]=x1[8]∧x2[3]=x2[8]∧x0[3]=x0[8]∧&&(>=(x2[8], x0[8]), <(x2[8], x1[8]))=TRUE∧x1[8]=x1[1]∧x2[8]=x2[1]∧x0[8]=x0[1]∧x1[1]=x1[2]∧x0[1]=x0[2]∧x2[1]=x2[2] ⇒ COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1497_0_MAIN_LE(x1[1], x0[1], x2[1])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))
(44) (>=(x2[8], x0[8])=TRUE∧<(x2[8], x1[8])=TRUE ⇒ COND_1482_0_MAIN_LOAD(TRUE, x1[8], x2[8], x0[8])≥NonInfC∧COND_1482_0_MAIN_LOAD(TRUE, x1[8], x2[8], x0[8])≥1497_0_MAIN_LE(x1[8], x0[8], x2[8])∧(UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥))
(45) (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[8] + [(-1)bni_19]x0[8] + [(-1)bni_19]x1[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
(46) (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[8] + [(-1)bni_19]x0[8] + [(-1)bni_19]x1[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
(47) (x2[8] + [-1]x0[8] ≥ 0∧x1[8] + [-1] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[8] + [(-1)bni_19]x0[8] + [(-1)bni_19]x1[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
(48) (x2[8] ≥ 0∧x1[8] + [-1] + [-1]x0[8] + [-1]x2[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[8] + [(2)bni_19]x2[8] + [(-1)bni_19]x1[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
(49) (x2[8] ≥ 0∧x0[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)Bound*bni_19] + [bni_19]x2[8] + [(-1)bni_19]x0[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
(50) (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)Bound*bni_19] + [bni_19]x2[8] + [(-1)bni_19]x0[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
(51) (x2[8] ≥ 0∧x0[8] ≥ 0∧x1[8] ≥ 0 ⇒ (UIncreasing(1497_0_MAIN_LE(x1[1], x0[1], x2[1])), ≥)∧[(-1)Bound*bni_19] + [bni_19]x2[8] + [(-1)bni_19]x0[8] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
(52) (&&(>=(x2[2], x1[2]), >=(x2[2], x0[2]))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧x2[2]=x2[3]∧x1[3]=x1[8]∧x2[3]=x2[8]∧x0[3]=x0[8]∧&&(>=(x2[8], x0[8]), <(x2[8], x1[8]))=TRUE∧x1[8]=x1[1]∧x2[8]=x2[1]∧x0[8]=x0[1] ⇒ 1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥NonInfC∧1482_0_MAIN_LOAD(x1[8], x2[8], x0[8])≥COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])∧(UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥))
(53) (>=(x2[2], x1[2])=TRUE∧>=(x2[2], x0[2])=TRUE∧<(x2[2], x1[2])=TRUE ⇒ 1482_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1482_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥COND_1482_0_MAIN_LOAD(&&(>=(x2[2], x0[2]), <(x2[2], x1[2])), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥))
(54) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)Bound*bni_21] + [(2)bni_21]x2[2] + [(-1)bni_21]x0[2] + [(-1)bni_21]x1[2] ≥ 0∧[-1 + (-1)bso_22] ≥ 0)
(55) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)Bound*bni_21] + [(2)bni_21]x2[2] + [(-1)bni_21]x0[2] + [(-1)bni_21]x1[2] ≥ 0∧[-1 + (-1)bso_22] ≥ 0)
(56) (x2[2] + [-1]x1[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])), ≥)∧[(-1)Bound*bni_21] + [(2)bni_21]x2[2] + [(-1)bni_21]x0[2] + [(-1)bni_21]x1[2] ≥ 0∧[-1 + (-1)bso_22] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1482_0_MAIN_LOAD(x1, x2, x3)) = [2]x2 + [-1]x3 + [-1]x1
POL(COND_1482_0_MAIN_LOAD(x1, x2, x3, x4)) = [1] + [2]x3 + [-1]x4 + [-1]x2
POL(<(x1, x2)) = [-1]
POL(COND_1497_0_MAIN_LE(x1, x2, x3, x4)) = [1] + [2]x4 + [-1]x3 + [-1]x2
POL(1497_0_MAIN_LE(x1, x2, x3)) = [-1] + [2]x3 + [-1]x2 + [-1]x1
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])
COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])
COND_1482_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1497_0_MAIN_LE(x1[1], x0[1], x2[1])
1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])
1482_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1482_0_MAIN_LOAD(<(x2[0], x0[0]), x1[0], x2[0], x0[0])
COND_1497_0_MAIN_LE(TRUE, x1[3], x0[3], x2[3]) → 1482_0_MAIN_LOAD(x1[3], x2[3], x0[3])
1497_0_MAIN_LE(x1[2], x0[2], x2[2]) → COND_1497_0_MAIN_LE(&&(>=(x2[2], x1[2]), >=(x2[2], x0[2])), x1[2], x0[2], x2[2])
1482_0_MAIN_LOAD(x1[8], x2[8], x0[8]) → COND_1482_0_MAIN_LOAD(&&(>=(x2[8], x0[8]), <(x2[8], x1[8])), x1[8], x2[8], x0[8])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |